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Part 9:  Rotational Motion    
 

University Physics V1 (Openstax):  Chapter 10 & 11 

Physics for Engineers & Scientists (Giancoli):  Chapter 8 
 

Rotational Kinematics       
 

For rotating objects, velocity is not a universal variable.  Different parts of the 

object move at different speeds.  Distance (x) is also not a universal variable. 

Consequently, these are not good variables to describe rotational motion. 
 

• Angular Position (θ) fills the role of x. 
 

• Initial Angular Position (θ0) is the angular position at t=0, and it fills the role of x0. 
  

• Angular Displacement (Δθ = θ – θ0) fills the role of Δx. 
 

• Arc Length (S) is the distance a part of the rigid object moves. 

 

 

 

 

1 rotation/revolution = 2π radians = 360° 

 

𝑆 = 𝑟 ∙ ∆𝜃 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)          

 

𝜃 =  
𝑆

𝑟
         

𝑚𝑒𝑡𝑒𝑟𝑠

𝑚𝑒𝑡𝑒𝑟𝑠
= 𝑛𝑜 𝑢𝑛𝑖𝑡𝑠      

 

 Note: ‘Radians’ is a ‘dummy’ unit.

 

• Angular Velocity (ω) fills the role of v.  (ω is also called ‘Angular Frequency’) 
 

• Initial Angular Velocity (ω0) is the angular velocity at t=0, and it fills the role of v0. 
 

Note: ‘ω’ is a lower-cased Greek letter omega.  Not W. 
 

𝜔𝐴𝑣𝑔 =  
∆𝜃

∆𝑡
=  

𝜃− 𝜃0

𝑡
         𝜔 =  

𝑑𝜃

𝑑𝑡
          Units:  

𝑟𝑎𝑑

𝑠
           𝑟𝜔 =  𝑟

𝑑𝜃

𝑑𝑡
=  

𝑑(𝑟𝜃)

𝑑𝑡
=  

𝑑𝑆

𝑑𝑡
=  𝑣 

 

• The Period (T) is the time needed to make one full revolution. 
 

• The Frequency (f) is the rotation rate (number of revolutions per unit time) 
 

Units:   1 
Revolution

Second
= 1 s−1 = 1 Hz            60 RPM = 60 

Revolution

Minute
= 1 Hz 

 

𝑓 =  
1

𝑇
                 𝜔 = 2𝜋𝑓 =  

2𝜋

𝑇
                 𝑣 =  

2𝜋𝑟

𝑇
= 𝜔𝑟 
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• In rotational motion, Acceleration (a) gets broken down into two components. 
 

 

• Tangential Accleration (aT) changes the speed 

(magnitude of velocity) of an object moving 

in a circle.  
 

• Radial Accleration (aR), equivalent to 

centripetal acceleration (aC), changes the 

direction but not the speed of an object 

moving in a circle. 
 

𝑎 =  √𝑎𝑇
2 +  𝑎𝑅

2          

 

• Angular Acceleration (α) fills the role of a. 
 

𝛼𝐴𝑣𝑔 =  
∆𝜔

∆𝑡
=  

𝜔− 𝜔0

𝑡
            𝛼 =  

𝑑𝜔

𝑑𝑡
             Units:  

𝑟𝑎𝑑

𝑠2  

 

 𝑟𝛼 =  𝑟
𝑑𝜔

𝑑𝑡
=  

𝑑(𝑟𝜔)

𝑑𝑡
=  

𝑑𝑣

𝑑𝑡
=  𝑎𝑇          𝑎𝑅 =  𝑎𝐶 =  

𝑣2

𝑟
=  

(𝑟𝜔)2

𝑟
= 𝑟𝜔2     

 

• For the special case of constant angular acceleration, a set of equations can be found from the 

one-dimensional kinematic equations for constant acceleration. 
 

𝑣 =  𝑣0 +  𝑎𝑇𝑡          𝜔𝑟 =  𝜔0𝑟 +  𝛼𝑟𝑡          𝜔 =  𝜔0 +  𝛼𝑡 
 

𝑠 =  𝑠0 + 
1

2
(𝑣 +  𝑣0)𝑡         𝑟𝜃 =  𝑟𝜃0 + 

1

2
(𝑟𝜔 +  𝑟𝜔0)𝑡         𝜃 =  𝜃0 +  

1

2
(𝜔 +  𝜔0)𝑡 

 

𝑠 =  𝑠0 + 𝑣0𝑡 +  
1

2
𝑎𝑇𝑡2         𝑟𝜃 =  𝑟𝜃0 +  𝑟𝜔0𝑡 +  

1

2
𝑟𝛼𝑡2         𝜃 =  𝜃0 +  𝜔0𝑡 +  

1

2
𝛼𝑡2 

 

𝑣2 =  𝑣0
2 +  2𝑎𝑇(𝑠 − 𝑠0)         𝑟2𝜔2 =  𝑟2𝜔0

2 +  2𝑟𝛼(𝑟𝜃 − 𝑟𝜃0)         𝜔2 =  𝜔0
2 +  2𝛼(𝜃 − 𝜃0) 

 

• Rotational kinematics are similar to one-dimensional kinematics (just a change of 

variable) and solved the same way. 
 

• There are four variables (θ, ω, α, and t) and two constants (θ0 and ω0). 
 

• Three of the variables are related in each of the four equations.  In many cases you can 

find the equation you need by determining which variable is absent. 
 

Example: A wind turbine is activated as the winds reach a threshold.  The blades start from rest and 

accelerate uniformly to an angular velocity of 9.87 rpms in 27.4 s.  Determine the angular acceleration 

of the blades. 
 

Extract Data:        ω0 = 0        ω = 9.87 rpms = 1.03358 rad/s        t = 27.4 s        α = ???  
 

𝜔 = 9.87 (
𝑅𝑒𝑣

𝑀𝑖𝑛
) (

1 𝑀𝑖𝑛

60 𝑠
) (

2𝜋 𝑟𝑎𝑑

1 𝑅𝑒𝑣
) = 1.03358

𝑟𝑎𝑑

𝑠
 

 

Be warned: 2π/60 = 0.10472.  If you fail to do this conversion, 

you will be off by a factor that is close to a power of 10. 
 

No information about position is given.  The equation without position is… 
 

𝜔 =  𝜔0 +  𝛼𝑡 =  𝛼𝑡          𝛼 =  
𝜔

𝑡
=  

1.03358
𝑟𝑎𝑑

𝑠

27.4 𝑠
= 0.03772

𝑟𝑎𝑑

𝑠2  
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Example: A grinding wheel undergoes uniform angular acceleration from rest to 680 rad/s over 1.30 

seconds.  Then the power is removed and friction causes it to decelerate back to rest in 18.7 seconds.  

Through what angle does the wheel turn during this time? 
 

There are two different accelerations (both constants).  This requires two sets of equations, one for the 

acceleration and one for the deceleration.  This is an odd case where both are the same. 
 

Accelerating:    
 

Extract Data:    𝜃0 = 0      𝜃 = ? ? ?      𝜔0 = 0      𝜔 = 680
𝑟𝑎𝑑

𝑠
      𝛼 =       𝑡 = 1.30 𝑠 

 

Equation with no α:      𝜃 =  𝜃0 + 
1

2
(𝜔 + 𝜔0)𝑡        𝜃 =  

1

2
𝜔𝑡 =  

1

2
(680

𝑟𝑎𝑑

𝑠
) (1.30 𝑠) = 442 𝑟𝑎𝑑 

 

Decelerating:  
 

Extract Data:    𝜃0 = 442 𝑟𝑎𝑑      𝜃 = ? ? ?      𝜔0 = 680
𝑟𝑎𝑑

𝑠
      𝜔 = 0      𝛼 =       𝑡 = 18.7 𝑠 

 

Equation with no α:      𝜃 =  𝜃0 + 
1

2
(𝜔 + 𝜔0)𝑡         

 

𝜃 =  𝜃0 +  
1

2
𝜔0𝑡 = 442 𝑟𝑎𝑑 +  

1

2
(680

𝑟𝑎𝑑

𝑠
) (18.7 𝑠) = 6800 𝑟𝑎𝑑 

 

Alternatively, one could note that the average angular velocity is the same 

value whether accelerating or decelerating.   
   

The solution would just be ωavgtnet 
 

 𝜔𝑎𝑣𝑔 =
1

2
𝜔 =  

1

2
(680

𝑟𝑎𝑑

𝑠
) = 340

𝑟𝑎𝑑

𝑠
          𝜃 =  𝜔𝑎𝑣𝑔𝑡 = (340

𝑟𝑎𝑑

𝑠
) (1.30 𝑠 + 18.7 𝑠) = 6800 𝑟𝑎𝑑 

 

Rotational Vectors       
 

• While we are able to treat rotational variables one-dimensionally in most cases, they are still 

vectors with magnitude and direction. 
 

• The direction of rotational vectors is defined to be either parallel or anti-parallel to the axis of 

rotation.  Anti-parallel means parallel but pointing the opposite direction. 
 

• If the object is rotating counter-clockwise in an xy-plane when viewed from above, then ω points 

upward in the z-direction. 
 

• If the object is rotating clockwise in an xy-plane when viewed from above, then ω points 

downward in the negative z-direction. 
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Rotational Dynamics       
 

• As rotational kinematics showed many similarities with one-dimensional translational 

kinematics, we can expect more similarities to appear in dynamics, but there are some 

differences too. 
 

Concept Translational (1D) Rotational Relationship 

Position x  (or S) θ S = rθ 

Velocity v ω v = rω 

Acceleration a α aT = rα     𝑎𝑅 =  𝜔2𝑟 

Cause of Acceleration F τ (Torque) 𝜏 =  𝑟  × 𝐹⃗    (|𝜏| = 𝑟𝐹 sin 𝜃) 

Inertia m I (Moment of Inertia) dI = r2dm 

Newton’s 2nd Law 𝐹⃗  =  𝑚𝑎⃗ 𝜏  =  𝐼𝛼⃗  

Work W = Fd W = τθ  

Kinetic Energy KETranslational = ½mv2 KERotational = ½Iω2  

Momentum 𝑃⃗⃗  =  𝑚𝑣⃗ 𝐿⃗⃗  =  𝐼𝜔⃗⃗⃗ 𝐿⃗⃗ =  𝑟  ×  𝑃⃗⃗ 

Force/Momentum 𝐹⃗ =  
𝑑𝑃⃗⃗

𝑑𝑡
 𝜏 =  

𝑑𝐿⃗⃗

𝑑𝑡
  

 

Moment of Inertia (I)       
 

• The moment of inertia is the rotational equivalent of mass (a resistance to being spun). 
 

An object in uniform circular motion can be looked at as either rotational 

motion or as in linear translational motion (at least temporarily). 
 

The kinetic energy of this motion should be the same either 

way it is calculated.  This allows us to determine a 

relationship between moment of Inertia (I) and mass (m). 
 

 

𝐾𝐸𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑚𝑣2 =

1

2
𝑚(𝑟𝜔)2 =

1

2
𝑚𝑟2𝜔2 

 

𝐾𝐸𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝐼𝜔2             

1

2
𝑚𝑟2𝜔2 =

1

2
𝐼𝜔2   

    

𝐼 = 𝑚𝑟2  
 

Note:  This is only valid when all the mass is located at the 

same distance (r) from the axis of rotation. 

 

• When the mass is not all at the same value of r, you must calculate the mass at each value of r 

and sum them all up.  As there is often a continuous distribution of r values, summing may mean 

integration. 

𝑑𝐼 =  𝑟2𝑑𝑚          𝐼 =  ∫ 𝑟2𝑑𝑚
𝑟2

𝑟1
          𝑑𝑚 =  𝜌𝑑𝑉 

 

Example:  Determine the moment of inertia of a solid cylindrical disk of uniform density, mass M, and 

radius R. 
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Step 1: Split mass into small pieces, each with the same value of r (as r appears in our equation).  In 

this case, it will be infinitesimally thin cylindrical shells. 
 

      
The left image shows the cylinder and its dimensions (R and h). 

The center image shows one of the small pieces, a hollow cylinder in the center (orange). 

The right image is a view from above.  The thickness of the shell is dr. 
 

Step 2: Find ‘dm’, the mass of a representative shell. 
 

𝑑𝑚 =  𝜌𝑑𝑉 =  𝜌𝐴𝑑𝑟 =  𝜌(2𝜋𝑟ℎ)𝑑𝑟 =  (2𝜋𝜌ℎ)𝑟𝑑𝑟          𝜌 =  
𝑀

𝑉
=  

𝑀

𝜋𝑅2ℎ
 

 

A is the surface area of the cylindrical shell.  The length is the circumference and the width is h. 
 

𝑑𝑚 =  (2𝜋𝜌ℎ)𝑟𝑑𝑟 =  (2𝜋
𝑀

𝜋𝑅2ℎ
ℎ) 𝑟𝑑𝑟 =

2𝑀

𝑅2
𝑟𝑑𝑟 

 

Be careful with your variables.  Don’t confuse R and r.  R is the radius of 

the cylindrical disk.  r is the radius of the thin cylindrical shell. 
 

Step 3: Plug in and integrate. 
 

𝐼 =  ∫ 𝑟2𝑑𝑚
𝑅

0

=  ∫ 𝑟2 (
2𝑀

𝑅2
𝑟𝑑𝑟)

𝑅

0

=  
2𝑀

𝑅2
∫ 𝑟3𝑑𝑟

𝑅

0

=  
2𝑀

𝑅2
[
𝑟4

4
]

0

𝑅

=
2𝑀

𝑅2
[
𝑅4

4
] =  

1

2
𝑀𝑅2 

 

Example: Find the moment of inertia for a flat (right) triangular plate if it is rotating around the y-axis.  

You may assume uniform thickness and density. 
 

Step 1: Split mass into small pieces, each with the same value of r (as r appears in our equation). 
 

In this case the distance from the axis of rotation (the y-axis), is just x.  (r = x) 
 

Step 2: Find ‘dm’, the mass of the strip. 
 

𝑑𝑚 =  𝜌𝑑𝑉 =  𝜌𝑧0𝐴 =  𝜌𝑧0𝑦𝑑𝑥 
 

In this instance, we must find y as a function of x 

(since y varies with x). 
 

𝑦 =  𝑚𝑥 + 𝑏        𝑚 =  
∆𝑦

∆𝑥
=  

0 − 𝑦0

𝑥0 − 0
= −

𝑦0

𝑥0
 

 

𝑏 =  𝑦0      𝑑𝑚 =  𝜌𝑧0𝑦𝑑𝑥 = 𝜌𝑧0(𝑚𝑥 + 𝑏)𝑑𝑥  
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We also need the value of ρ.          𝜌 =  
𝑀

𝑉
=  

𝑀

𝐴𝑡
=  

𝑀
1

2
𝑏ℎ𝑡

=
2𝑀

𝑏ℎ𝑡
=

2𝑀

𝑥0𝑦0𝑧0
 

 

Step 3: Plug in and integrate. 
 

𝐼 =  ∫ 𝑟2𝑑𝑚
𝑥0

0

=  ∫ 𝑥2𝑑𝑚
𝑥0

0

= ∫ 𝑥2𝜌𝑧0(𝑚𝑥 + 𝑏)𝑑𝑥
𝑥0

0

=  ∫ 𝑥2
2𝑀

𝑥0𝑦
0
𝑧0

𝑧0(𝑚𝑥 + 𝑏)𝑑𝑥
𝑥0

0

  

 

𝐼 =  
2𝑀

𝑥0𝑦
0

∫ (𝑚𝑥3 + 𝑏𝑥2)𝑑𝑥
𝑥0

0

=  
2𝑀

𝑥0𝑦
0

[
1

4
𝑚𝑥4 + 

1

3
𝑏𝑥3]

0

𝑥0

 =  
2𝑀

𝑥0𝑦
0

[
1

4
𝑚𝑥0

4 + 
1

3
𝑏𝑥0

3] 

 

𝐼 =  
2𝑀

𝑥0𝑦
0

[
1

4
(−

𝑦
0

𝑥0
) 𝑥0

4 + 
1

3
(𝑦

0)𝑥0
3] =

2𝑀

𝑥0𝑦
0

[−
1

4
𝑦

0
𝑥

0
3 + 

1

3
𝑦

0
𝑥0

3] =  
2𝑀

𝑥0𝑦
0

[
1

12
𝑦

0
𝑥0

3] =
1

6
𝑀𝑥0

2
 

 

• Most of the time you will simply pull a formula from a table of standard shapes. 

 

 
 

• Moment of inertia is dependent upon the choice of axis. 
 

• If you have multiple objects with the same axis of rotation you simply add their moments of 

inertia. (Moments of inertia sum) 
 

• The Parallel Axis Theorem allows you to calculate the moment of inertia of an object rotating 

around an axis that doesn’t pass through its center of mass.  To do this you need the moment of 

inertia for an axis parallel to the axis of rotation and passing through the center of mass (ICM) and 

the separation of the two axes (h). 
 

𝐼 =  𝐼𝑐𝑚 + 𝑀ℎ2 

 

Example: Find the moment of inertia of a thin rod about axis through one end ┴ to length via the 

parallel axis theorem. 
 

𝐼 =  𝐼𝑐𝑚 + 𝑀ℎ2 =  
1

12
𝑀𝐿2 + 𝑀 (

𝐿

2
)

2

=  
1

12
𝑀𝐿2 +

1

4
𝑀𝐿2 =  

1

3
𝑀𝐿2 

 

Torque (τ):      𝜏 = 𝑟𝐹𝑦 = 𝑟𝐹 sin 𝜃      𝜏 = 𝐹𝑙 = 𝐹𝑟 sin 𝜃      |𝜏| = |𝑟 × 𝐹⃗| = 𝐹𝑟 sin 𝜃    
 

Moment of inertia of most objects is fixed (constant).  In those cases, Newton’s 2nd law (𝜏  =

 𝐼𝛼⃗) indicates torque (τ) and angular acceleration (α) are proportional.  This allows us to use 

the behavior of an object (its angular acceleration) to indicate how much torque was 

delivered when various forces are applied to it.  For our example we will use a door. 
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Force A doesn’t work very well. A lot of force leads to little movement of the door. 

Force C is the best option. A little force here is usually enough to open the door. 

Force B requires more force than C, but not as much as A. 

Force D doesn’t open the door at all.   
 

• Any force that acts through the axis of rotation generates no torque. 
 

• To generate torque a force must have a a component  ┴  to the line connecting the axis of 

rotation to the point where the force acts. 
 

• The further from the axis of rotation the force is applied the greater the torque. 

 
 

If we apply a force 𝐹⃗ to an object, we define the vector 𝑟 to start at the axis of rotation and at the 

position where the force is applied.  θ is defined to be the angle between 𝐹⃗ and  𝑟. 

•  

• Breaking 𝐹⃗ into component (parallel and perpendicular to 𝑟) we find: 
 

• Fx (the component parallel to 𝑟) generates NO torque. 
 

• Fy (the component perpendicular to 𝑟) generates positive torque as it rotates the door 

counter clockwise (CCW). 
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• The magnitude of the torque (𝜏 =  |𝜏|) is given by:    𝜏 = 𝑟𝐹𝑦 = 𝑟𝐹 sin 𝜃 

 

• Forces that create clockwise (CW) rotations are generating negative torque. 

•  

• Breaking  𝑟 into component (parallel and perpendicular to 𝐹⃗) we find: 
 

• The component parallel to 𝐹⃗ has no bearing on the torque at all. 
 

• The component perpendicular to 𝐹⃗ is called the Lever Arm (l), and it is directly related to 

the torque.  Any increase in the lever arm gives a proportional increase in torque (𝜏). 
 

• The magnitude of the torque (𝜏 =  |𝜏|) is given by:   𝜏 = 𝐹𝑙 = 𝐹𝑟 sin 𝜃 
 

• We gain “Leverage” by increasing the lever arm. 
 

• Both viewpoints give the same result, which is often represented as a vector cross product. 
 

|𝜏| = |𝑟 × 𝐹⃗| = 𝐹𝑟 sin 𝜃 

 

There are more advanced methods of calculating vector cross products, but these are 

rarely used for torque (as we already know the direction along the axis of rotation). 

 
 

Example: Three forces act on a compound wheel as shown.  The forces come from ropes wrapped 

around the edges of the wheel.  The moment of inertia of the wheel is 30.0 kg·m2 with an inner radius of 

r1= 25.0 cm and an outer radius of r2 = 50.0 cm.  Determine the angular acceleration of the wheel in 

response to the three forces: F1 = 80.0 N, F2 = 30.0 N, and F3 = 20.0 N. 
 

  

Use Newton’s 2nd Law:  ∑ 𝜏 = 𝐼𝛼   

 

To find the torque for each force vector: 
 

(1) Determine sign on torque: CCW is ‘+’, 

CW is ‘-‘ 
 

(2) Find the vector 𝑟, note it’s magnitude 
 

(3) Determine the angle between 𝑟 and 𝐹⃗ 

(that’s θ) 
 

(4) 𝜏 =  𝑟𝐹 𝑠𝑖𝑛 𝜃
 

∑ 𝜏 = 𝑟1𝐹1 sin 90° − 𝑟2𝐹2 sin 90°

+  𝑟2𝐹3 sin 90°

=  𝑟1𝐹1 − 𝑟2𝐹2 +  𝑟2𝐹3 
 

∑ 𝜏 = (0.250 𝑚)(80.0𝑁)

− (0.500 𝑚)(30.0 𝑁)

+  ((0.500 𝑚))(20.0 𝑁) 
 

∑ 𝜏 = 20.0 𝑁 ∙ 𝑚 − 15.0 𝑁 ∙ 𝑚 +  10.0 𝑁 ∙ 𝑚

= 15.0 𝑁 ∙ 𝑚 
 

𝛼 =  
𝜏𝑁𝑒𝑡

𝐼
=  

15.0 𝑁 ∙ 𝑚

30.0 𝑘𝑔 ∙ 𝑚2
= 0.500

𝑟𝑎𝑑

𝑠2
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Example: A box of mass m2 = 10.0 kg sits on a table as 

shown.  On one side a cord connects it to a hanging weight 

of mass m1 = 25.0 kg.  The cord stretches over a 

frictionless pulley, a solid disk of uniform density with 

mass M = 5.00 kg.  If the coefficient of kinetic friction 

between the box and table is 0.300, determine the 

acceleration of the box on the table. 

 

 

 

Make 3 force diagrams (one for each object).  There are 3 unknowns (2 tensions and acceleration).  This 

means you will need 3 equations, one from each force diagram.  Angular acceleration is not another 

unknown as it is directly related to the acceleration in this problem. 
 

The box on the table (m2) accelerates to the right, which corresponds to a clockwise (CW) rotation of 

the pulley (M) and a downward acceleration of the hanging weight (m1).  To match the signs, for this 

problem we shall let CW rotations and downward accelerations become positive.  

 

𝑚1𝑔 −  𝑇1 = 𝑚1𝑎 

 

 

𝑇1 = 𝑚1𝑔 −  𝑚1𝑎 

             
 

𝑁 =  𝑊2 =  𝑚2𝑔 
 

𝐹𝐹 =  𝜇𝑘𝑁 =  𝜇𝑘𝑚2𝑔 
 

𝑇2 −  𝐹𝐹 =  𝑚2𝑎 
 

𝑇2 =  𝑚2𝑎 +  𝜇𝑘𝑚2𝑔  

 

 

∑ 𝜏 =  𝜏1 + 𝜏2 = 𝑅𝑇1 − 𝑅𝑇2 = 𝑅(𝑇1 − 𝑇2) 

 

∑ 𝜏 = 𝑅(𝑚1𝑔 −  𝑚1𝑎 − 𝑚2𝑎 −  𝜇𝑘𝑚2𝑔) 

 

𝐼𝛼 =  (
1

2
𝑀𝑅2) (

𝑎

𝑅
) =

1

2
𝑀𝑅𝑎          𝐼𝛼 = ∑ 𝜏 

 

1

2
𝑀𝑅𝑎 =  𝑅(𝑚1𝑔 −  𝑚1𝑎 −  𝑚2𝑎 − 𝜇𝑘𝑚2𝑔) 

 

1

2
𝑀𝑎 =  𝑚1𝑔 −  𝑚1𝑎 −  𝑚2𝑎 −  𝜇𝑘𝑚2𝑔          𝑚1𝑎 +  𝑚2𝑎 +

1

2
𝑀𝑎 =  𝑚1𝑔 −  𝜇𝑘𝑚2𝑔 

 

𝑎 =  
𝑚1𝑔 −   𝜇𝑘𝑚2𝑔

𝑚1 +  𝑚2  +
1
2 𝑀

=  
(𝑚1 −   𝜇𝑘𝑚2)𝑔

𝑚1 + 𝑚2  +
1
2 𝑀

=  
[(25.0 𝑘𝑔) − (0.300)(10.0 𝑘𝑔)](9.80 𝑚/𝑠2)

25.0 𝑘𝑔 + 10.0 𝑘𝑔 +
1
2

(5.00 𝑘𝑔)
= 5.75

𝑚

𝑠2
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Example: Three forces act on a compound wheel as 

shown.  The forces come from ropes tied to pins on the 

edges of the wheel.  The moment of inertia of the wheel is 

30.0 kg·m2 with an inner radius of r1= 25.0 cm and an 

outer radius of r2 = 50.0 cm.  Determine the angular 

acceleration of the wheel in response to the three forces: 

F1 = 80.0 N, F2 = 30.0 N, and F3 = 20.0 N.  

 

∑ 𝜏 =  𝜏1 + 𝜏2 + 𝜏3 = 𝑟1𝐹1 sin 75° − 𝑟2𝐹2 sin 70° +  𝑟1𝐹3 sin 65° 

 

𝜏𝑁𝑒𝑡 =  (0.250 𝑚)(80.0 𝑁) sin 75° − (0.500 𝑚)(30.0 𝑁) sin 70° +  (0.250 𝑚)(20.0 𝑁) sin 65° 
 

𝜏𝑁𝑒𝑡 = 9.7547 𝑁 ∙ 𝑚           𝛼 =  
𝜏𝑁𝑒𝑡

𝐼
=  

9.7547 𝑁∙𝑚

30.0 𝑘𝑔∙𝑚2 = 0.325
𝑟𝑎𝑑

𝑠2  

 

Example: A hoop, a sphere, and a solid cylinder roll down an incline.  Each has 

uniform density, the same mass and radius.  If all three are released 

simultaneously, which gets to the bottom of the incline first?  
 

We shall use I = cMR2 as it applies to all 3 objects with the correct choice of c.  

The object with the highest velocity at the bottom gets there first (highest Vavg) 

 

Conservation of Energy:   𝐸𝑖𝑛𝑖𝑡 =  𝐸𝐹𝑖𝑛𝑎𝑙            𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 

 

𝑀𝑔ℎ =
1

2
𝑀𝑣2 +

1

2
(𝑐𝑀𝑅2) (

𝑣

𝑅
)

2
            𝑀𝑔ℎ =

1

2
𝑀𝑣2 +

1

2
𝑐𝑀𝑣2 = (1 + 𝑐)

1

2
𝑀𝑣2 

 

𝑔ℎ = (1 + 𝑐)
1

2
𝑣2            𝑣2 =

2𝑔ℎ

1+𝑐
            𝑣 = √

2𝑔ℎ

1+𝑐
 

 

The object with the highest velocity at the bottom has the lowest value of ‘c’. 
 

The sphere wins because it has more mass near the axis of rotation.  

 

Example: A box of mass m2 = 10.0 kg sits on a table as 

shown.  On one side a cord connects it to a hanging 

weight of mass m1 = 25.0 kg.  The cord stretches over a 

frictionless pulley, a solid disk of uniform density with 

mass M = 5.00 kg.  The coefficient of kinetic friction 

between the box and table is 0.300.  Determine the 

velocity of the hanging mass after it has fallen a distance 

of 0.500 m. 

 
 

The previous similar problem asked for acceleration, which is related to forces.  This problem asks for 

velocity, which is related to kinetic energy.  Using conservation of energy is preferable. 
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The gravitational potential energy of the box (m2) and the pulley (M) remain constant.  We will ignore 

these as they will cancel out. 

 

𝐸𝑖𝑛𝑖𝑡 − 𝐸𝐿𝑜𝑠𝑡 =  𝐸𝐹𝑖𝑛𝑎𝑙            𝐸𝑖𝑛𝑖𝑡 = 𝑚1𝑔ℎ0             𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚2𝑣2 + 

1

2
𝑚1𝑣2 + 

1

2
𝐼𝜔2 +  𝑚1𝑔ℎ 

 

 𝐸𝑙𝑜𝑠𝑡 = 𝐹𝐹𝑑 =  𝜇𝑘𝑁𝑑 =  𝜇𝑘𝑚2𝑔𝑑 =   𝜇𝑘𝑚2𝑔(ℎ0 − ℎ) 
 

𝑚1𝑔ℎ0 −  𝜇𝑘𝑚2𝑔(ℎ0 − ℎ) =
1

2
𝑚2𝑣2 + 

1

2
𝑚1𝑣2 +  

1

2
𝐼𝜔2 +  𝑚1𝑔ℎ 

 

𝑚1𝑔ℎ0 −  𝑚1𝑔ℎ −  𝜇𝑘𝑚2𝑔(ℎ0 − ℎ) =
1

2
𝑚2𝑣2 + 

1

2
𝑚1𝑣2 +  

1

2
𝐼𝜔2 

 

𝑚1𝑔(ℎ0 −  ℎ) −  𝜇𝑘𝑚2𝑔(ℎ0 − ℎ) =
1

2
𝑚2𝑣2 +  

1

2
𝑚1𝑣2 +  

1

2
(

1

2
𝑀𝑅2) (

𝑣

𝑅
)

2

 

 

(𝑚1 −  𝜇𝑘𝑚2)𝑔(ℎ0 − ℎ) =
1

2
𝑚2𝑣2 +  

1

2
𝑚1𝑣2 +  

1

4
𝑀𝑣2 

 

4(𝑚1 −  𝜇𝑘𝑚2)𝑔(ℎ0 − ℎ) = 2𝑚2𝑣2 +  2𝑚1𝑣2 +  𝑀𝑣2 = (2𝑚2 +  2𝑚1 +  𝑀)𝑣2 
 

 

𝑣2 =  
4(𝑚1 −  𝜇𝑘𝑚2)𝑔(ℎ0 − ℎ)

2𝑚2 +  2𝑚1 +  𝑀
 

 

𝑣 =  √
4(𝑚1 −  𝜇𝑘𝑚2)𝑔(ℎ0 − ℎ)

2𝑚2 +  2𝑚1 +  𝑀
=  √

4[25.0 𝑘𝑔 − (0.300)(10.0 𝑘𝑔)] (9.80
𝑚
𝑠2) (0.500𝑚)

2(10.0 𝑘𝑔) + 2(25.0 𝑘𝑔) +  5.00 𝑘𝑔
= 2.40

𝑚

𝑠
 

 

 

 

 
 

Example: A solid disk (I1 = 4.00 kg·m2) is spinning about a fixed spindle at ω0 = 

15.0 rad/s.  A second solid disk (I2 = 6.00 kg·m2), which is not rotating, is placed 

on the spindle and dropped onto the first disk.  There is friction between the two 

disks, and eventually they spin together.  Determine (A) the velocity of the two 

discs once they start spinning together and (B) the energy is lost during the 

collision. 

When spinning objects collide, it’s a good indication that conservation of momentum will be relevant. 
 

 

𝐿𝑖𝑛𝑖𝑡 =  𝐿𝐹𝑖𝑛𝑎𝑙        𝐼1𝜔0 =  (𝐼1 +  𝐼2)𝜔        𝜔 =  
𝐼1𝜔0

𝐼1+ 𝐼2
=  

(4.00 𝑘𝑔∙𝑚2)(15.0
𝑟𝑎𝑑

𝑠
)

4.00 𝑘𝑔∙𝑚2+ 6.00 𝑘𝑔∙𝑚2 = 6.00
𝑟𝑎𝑑

𝑠
 

 

 

𝐸𝐿𝑜𝑠𝑡 =  𝐸𝐼𝑛𝑖𝑡 −  𝐸𝐹𝑖𝑛𝑎𝑙 =  
1

2
𝐼1𝜔0

2 −  
1

2
(𝐼1 +  𝐼2)𝜔2 

 

 

𝐸𝐿𝑜𝑠𝑡 =  
1

2
(4.00 𝑘𝑔 ∙ 𝑚2) (15.0

𝑟𝑎𝑑

𝑠
)

2

−  
1

2
(4.00 𝑘𝑔 ∙ 𝑚2 +   6.00 𝑘𝑔 ∙ 𝑚2) (6.00

𝑟𝑎𝑑

𝑠
)

2

= 270 J 
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Example: An old park has a large turntable for children’s play.  It is initially at rest with a a radius of 

1.20 m and a moment of inertia of 125 kg·m2.  A 50.0 kg woman runs at 8.00 m/s towards the edge of 

the turntable and jumps on, grabbing hold of the hand rail.  Determine the angular velocity of the 

turntable after she jumps on. 
 

 

This is also a conservation of angular momentum problem. 

 

𝐿𝐼𝑛𝑖𝑡 =  𝐿𝑤𝑜𝑚𝑎𝑛 =  |𝑟 × 𝑝⃗| =  |𝑟 × 𝑚𝑣⃗| = 𝑅𝑚𝑣 sin 90° = 𝑅𝑚𝑣 

 

𝐿𝐹𝑖𝑛𝑎𝑙 =  (𝐼𝑤𝑜𝑚𝑎𝑛 + 𝐼𝑡𝑢𝑟𝑛𝑡𝑎𝑏𝑙𝑒)𝜔 =  (𝑚𝑅2 + 𝐼)𝜔          (𝑚𝑅2 + 𝐼)𝜔 = 𝑅𝑚𝑣 

 

𝜔 =
𝑅𝑚𝑣

𝑚𝑅2 + 𝐼
=  

(1.20 𝑚)(50.0 𝑘𝑔) (8.00
𝑚
𝑠 )

(50.0 𝑘𝑔)(1.20 𝑚)2 + 125 𝑘𝑔 ∙ 𝑚2
= 2.44

𝑟𝑎𝑑

𝑠
 

 

 

 

Example: The angular momentum of a precision grinding wheel as it starts to rotate is described by   

L(t) = L0(1-e-βt), with L0 = 315 kg·m2/s and β =0.247 s-1.  Determine the net torque on the wheel at           

t = 3.17s. 
 

𝜏𝑁𝑒𝑡(𝑡) =  
𝑑𝐿

𝑑𝑡
=  

𝑑

𝑑𝑡
[𝐿0(1 − 𝑒−𝛽𝑡)] =  

𝑑

𝑑𝑡
[𝐿0 − 𝐿0𝑒−𝛽𝑡] =  𝛽𝐿0𝑒−𝛽𝑡  

 

𝜏𝑁𝑒𝑡(3.17 𝑠) =  (0.247 s−1) (315 kg ·
m2

s
) 𝑒−(0.247 s−1)(3.17 𝑠)  = 35.6 𝑁 ∙ 𝑚 

 


